
Anisotropic Mesh Generation with Particles

Frank Bossen

May 13, 1996

CMU-CS-96-134

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Email:
bossen@cs.cmu.edu

bossen@ltssg7.epfl.ch

WWW:
http://www.cs.cmu.edu/~bossen

http://ltswww.epfl.ch/~bossen

This document is a revised version of the author's master's thesis (Ing�enieur EPF),

Computer Science, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzer-

land, March 1996.

Keywords: mesh generation, �nite element analysis, CFD, anisotropy, Riemannian
geometry, Delaunay triangulation, mesh smoothing, mesh relaxation

Abstract

Many important real-world problems require meshing, that is the approximation of a given
geometry by a set of simpler elements such as triangles or quadrilaterals in two dimen-
sions, and tetrahedra or hexahedra in three dimensions. Applications include �nite element
analysis and computer graphics. This work focuses on the former.
A physically-based model of interacting \particles" is introduced to uniformly spread points
over a 2-dimensional polygonal domain. The set of points is triangulated to form a triangle
mesh. Delaunay triangulation is used because it guarantees a low computational cost and
reasonably well-shaped elements. Several particle interaction (repulsion and attraction)
models are investigated ranging from Gaussian energy potentials to Laplacian smoothing.
Particle population control mechanisms are introduced to make the size of the mesh elements
converge to the desired size.
In most applications spatial mesh adaptivity is desirable. Triangles should not only adapt in
size but also in shape, to better �t the function to approximate. Computational
uid dyna-
mics simulations typically require triangles stretched in the direction of the
ow. A metric
tensor is introduced to quantify the stretching. The triangulation procedure is changed to
generate \Delaunay" meshes in the Riemannian space de�ned by the metric.
This new approach to mesh generation appears quite promising.

3

4

Contents

1 Introduction 7

1.1 Previous Work : 8
1.2 Approach Overview : 9

1.2.1 Document Outline : 11

2 Delaunay Triangulations 13

2.1 The Quadedge Data Structure : 14

2.2 Topological Operators : 15

2.2.1 MakeEdge : 16

2.2.2 Splice : 16
2.2.3 Connect : 16

2.2.4 Disconnect : 17

2.2.5 Swap : 17

2.2.6 DeleteEdge : 18

2.3 Geometrical Operators : 18

2.3.1 OnRight, OnLeft and OnEdge : 18

2.3.2 InCircle : 18

2.4 Triangulation Algorithms : 21

2.4.1 The Edge Swapping Algorithm : 21

2.4.2 The Incremental Algorithm : 21

2.5 Dynamic Maintenance of a Triangulation : 22

2.5.1 Site Insertion : 22
2.5.2 Walking Method for Point Location : : : : : : : : : : : : : : : : : : : 23

2.5.3 Site Removal : 24

2.5.4 Triangulation of a Simple Polygon : 25

2.6 Constrained Delaunay Triangulations : 25

2.6.1 An Incremental CDT Algorithm : 26

3 A World of Particles 27

3.1 Interaction Model : 27
3.1.1 Boundary Conditions : 29

3.1.2 Numerical Resolution : 29

3.1.3 Asynchronous Updating : 29

3.1.4 Second Order Model : 30

3.2 Interaction Neighborhoods : 30

3.3 Potential Functions : 31

5

3.3.1 Requirements at Equilibrium : 31
3.3.2 Gaussian Potential : 32
3.3.3 Lennard-Jones Potential : 33
3.3.4 Laplacian Smoothing : 34
3.3.5 Error Potentials : 34
3.3.6 Which is best? : 36

3.4 Adaptive Population Control : 36
3.4.1 1-D Algorithm : 36
3.4.2 2-D Algorithm : 37
3.4.3 Combination of 1-D and 2-D rules : 37
3.4.4 Initial Population : 38

3.5 Speeding up the Process : 38
3.5.1 Ending the simulation : 38

3.6 Results : 38

4 Interlude: Delaunay Triangulations with Java 41

5 Anisotropic Meshes 43

5.1 Riemannian Geometry : 43
5.1.1 Computing Distances : 44
5.1.2 Computing Areas : 45

5.2 Anisotropic Triangulation : 45
5.3 Anisotropic Energy Potential : 46
5.4 Background Mesh : 47
5.5 Method Summary : 47
5.6 Function Interpolation : 48

5.6.1 Example: a Gaussian function : 48
5.7 Incremental Mesh Adaptation : 49
5.8 Running Time : 50

6 Conclusion 53

6.1 Future work : 54
6.2 Acknowledgements : 55

6

Chapter 1

Introduction

Many important real-world problems require meshing, that is the approximation of a given
geometry by a set of simpler elements such as triangles or quadrilaterals in two dimen-
sions, and tetrahedra or hexahedra in three dimensions. Applications include �nite element
analysis [1] and computer graphics.

Many engineering simulations require the solution of partial di�erential or integral equ-
ations. Since most of these equations cannot be solved analytically, approximations must be
used. If the domain has a simple shape, one can use �nite di�erence methods with structu-
red grids. For more complex domains, �nite element methods are used on an unstructured
grid, that is a mesh.

Any mesh generator should address the following concerns:

� functionality. Obviously it should work.

� robustness. It should work all the time, with any input.

� quality. The quality of the resulting mesh should be good, that is closely match the
desires of the user.

� speed. The generation process should be fast.

� minimal user interaction. Everything that can be automated should be.

� controllability. The user should be able to in
uence the result in predictable ways.

In this work we limit ourselves to generate triangular meshes inside a two dimensional
domain bounded by a polygon which may contain holes. The main application we focus on
is �nite element analysis.

A physically-based model of interacting \particles" is introduced to uniformly spread
points over the domain. The set of points is triangulated to form a triangle mesh. De-
launay triangulation is used because it guarantees a low computational cost and reasonably
well-shaped elements. Several particle interaction (repulsion and attraction) models are
investigated ranging from Gaussian energy potentials to Laplacian smoothing. Particle po-
pulation control mechanisms are introduced to make the size of the mesh elements converge
to the desired size.

In most applications spatial mesh adaptivity is desirable. Triangles should not only
adapt in size but also in shape, to better �t the function to be approximated. Computational

7

uid dynamics simulations typically require triangles stretched in the direction of the
ow.
A metric tensor is introduced to quantify the stretching. The triangulation procedure is
changed to generate \Delaunay" meshes in the Riemannian space de�ned by the metric.

1.1 Previous Work

There are several surveys available on mesh generation [2, 15].

Most of present mesh generation algorithms are structured in the following way. First a
mesh is build with methods such as advancing front [19, 21, 23], quadtree decomposition [35],
or by greedy point insertion [3, 32]. The quality of the mesh is further improved with the
use of smoothing. The most common method is Laplacian smoothing [8].

Advancing front methods start meshing at the boundaries of the domain. A list of nodes
to be expanded (referred to as the front) is maintained. At each iteration, the front advances
by expanding a node, and inserting a new node at the desired distance from the front. Badly
shaped elements can appear in the middle of the domain, where the fronts collide.

Quadtree methods recursively split a square surrounding the domain into four smaller
squares, until the desired size is reached. To obtain a triangular mesh, the squares are
further divided into triangles.

Greedy insertion methods localize poorly shaped, or poorly sized elements, and split
them by inserting a new node on an edge [3], at the center of a triangle [32], or at the center
of the circle circumscribing a triangle [25]. Although the Delaunay criterion is the most
common, other triangle quality criteria have been used [31] to determine the topology of
the mesh.

Laplacian smoothing consists of moving each vertex to the centroid of its neighbors.
This operation must generally be repeated several times for each node before the quality
of the mesh is improved. Although Laplacian smoothing generally improves the shape of
elements, it is not guaranteed to do so, especially if the domain is concave. Furthermore the
degrees of the nodes, which are often the reason of poorly shaped elements, are not a�ected.
Relaxations methods that combine Laplacian smoothing with local topological optimization
have been proposed to remedy to this problem [10, 11].

Anisotropic mesh generation has not bene�ted from an extensive literature. One of the
major �elds of application for anisotropic meshes is computational
uid dynamics (CFD),
where stretched triangles oriented in the direction of the
ow are desirable. Mavriplis [22]
proposed to stretch the plane by lifting it on a surface in three dimensions. The deformation
of space is represented at each point by two values: an angle giving the direction of the
stretching, and a value larger than 1 quantifying the stretching. Before that, Peraire [23]
was using a similar representation to quantify the desired element size as a function of its
position and orientation.

Later a metric tensor was introduced [3, 31]. The tensor representation has the advantage
to be directly related to the Hessian of the function (speed, pressure, etc.) to be estimated [5].
It is thus a more natural representation to create adapted meshes. Quite impressive results
have been produced by Castro-Diaz, Hecht, and Mohammadi [3]. In their method, which is
of the greedy insertion type, edges that are too long are split, and edges that are too short
are collapsed. When the desired number of elements is reached, the mesh is further relaxed
to improve its quality.

Mesh generation has also bene�ted from other kinds of approaches. The idea of using
physically-based simulations for mesh generation has been investigated by Shimada [26] and

8

his bubble packing method. The bubble interaction (attraction/repulsion) model, which
is inspired by the Lennard{Jones interaction model from molecular chemistry, generates
triangulations that imitate Nature in her way of producing regular arrangements of points,
such as in crystals. The main advantages of this method are good point placement, and
intrinsic remeshing capabilities.

Physically-based models have also been used in computer graphics for sampling surfa-
ces [29, 30, 33, 34]. In these models, particles spread over complex surfaces to form uniform
sampling patterns. Szeliski [29] used attracting and repelling, oriented particles to intera-
ctively sculpt surfaces. Turk [30] considered resampling polygonal surfaces using repelling
particles. Witkin and Heckbert [34] used repelling particles to sample implicit surfaces.
Although many have thought of introducing anisotropy, and de�ning the sampling density
based on surface curvature, few have done it [30]. Witkin and Heckbert [34] have noticed
that such schemes can produce very regular patterns of points. Their work has been the
starting point of the work presented in this document.

1.2 Approach Overview

In this work, we limit ourselves to generate triangular meshes over polygonal domains in
the plane. The domain can contain holes, and constraints such as line segments and points.
Constrained points de�ne nodes that should appear in the mesh, and constrained line se-
gments should not be crossed by any edge in the mesh. The domain can be represented by
a planar straight line graph (PSLG), which is a set of points and non{crossing edges. An
example of such a graph is given in Figure 1.1.

Figure 1.1: A planar straight line graph

Given such a domain, points are added inside it and triangulated to form a mesh such
that the length of every edge matches as closely as possible a feature size function1. This
function is given in input to the mesher, and is de�ned in terms of the position of the vertices
of an edge. Di�erent classes of such functions generate di�erent kinds of meshes such as
(see Figure 1.2):

constrained where no feature size function is speci�ed

1We also refer to the feature size function as the desired edge length

9

CDT Uniform

Isotropic Anisotropic

Figure 1.2: Di�erent kinds of meshes

uniform where the feature size function is a constant

isotropic2 where the desired edge length depends on the position of the edge

anisotropic where the desired edge length depends on the position and the orientation of
the edge

To distribute the nodes inside the domain, a physically-based model of interacting \par-
ticles" is introduced. The functionality of the model can be expressed as:

1. Input: polygonal domain and feature size function

2. build an initial triangulation of the domain (constrained Delaunay), and create a
particle on each vertex of the domain

3. create, move, and annihilate particles inside the domain until equilibrium is reached.
The triangulation of the set of particles is maintained Delaunay at all times, that is

2These kind of meshes are also referred to as graded meshes

10

the topology of the mesh is locally optimized after each particle movement, creation,
and annihilation.

4. Output: a nice mesh

To illustrate this algorithm, consider the domain depicted in Figure 1.3a. First its
constrained Delaunay triangulation is built (Figure 1.3b).

Then the physically-based process is started. At each step, a particle is randomly picked,
and its position updated according to the positions of its neighbors. Then the local particle
density is estimated, and a particle is created/annihilated if the density is too low/high.
Figure 1.3c{f shows the evolution of the mesh. In a �rst phase (approximatively �rst 1000
steps in this case), particles are created until the population reaches the desired level which
depends on the feature size function. The growth is regulated by an adaptive population
control scheme. In a second phase, the mesh is regularized, that is node placement is
improved. For this example, after 8410 steps, equilibrium is reached and the algorithm
halts.

During the whole simulation the triangulation is maintained Delaunay using procedures
for point insertion, motion and removal.

1.2.1 Document Outline

The outline of this document is as follows. Chapter 2 introduces Delaunay triangulations
and related algorithms. Chapter 3 describes the physically-based model of interacting par-
ticles. Chapter 4 is an interlude in which the use of Java for programming an interactive
Delaunay triangulator on the web is presented. Chapter 5 generalizes the model described
in Chapter 3 to the anisotropic case, and presents some results. Finally conclusions are
drawn in Chapter 6.

11

a) Input PSLG b) Initial triangulation (CDT)

c) After 30 iterations (64 particles) d) After 300 iterations (226 particles)

e) After 3000 iterations (295 particles) f) After 8410 iterations (295 particles)

Figure 1.3: Mesh Evolution

12

Chapter 2

Delaunay Triangulations

The Voronoi diagram (VD) of a set S = fs1; s2; : : : ; sng of points in the plane, called sites,
is a partition of the plane into n convex regions, one per site. Each Voronoi cell Vi contains
all the points in the plane closer to si than to any other site. The planar dual of the Voronoi
diagram, obtained by adding a line segment between each pair of sites of S whose Voronoi
regions share an edge, is called the Delaunay triangulation (DT).

More practical de�nitions of a Delaunay triangulation are (all of the following statements
are equivalent):

� if a and b are input points, the DT contains the edge fa; bg if and only if there is
a circle through a and b that intersects no other input points and contains no input
points in its interior

� the circumscribing circle of each triangle contains no input points in its interior.

There is also a nice relationship between Delaunay triangulations and 3-dimensional
convex hulls. Lift each point of the input to a paraboloid by mapping the point (x; y) to
(x; y; x2+ y2)1. It can be proved [7] that the DT of the input points is the projection of the
lower convex hull onto the xy-plane.

The Delaunay triangulation features other interesting properties. Indeed it maximizes
of the minimum angle, minimizes the maximum circumcircle as many other measures.

The outline of the chapter is as follows. Section 2.1 de�nes data structures for repre-
senting triangulations. Associated topological and geometrical operators are de�ned in Se-
ctions 2.2 and 2.3. Section 2.4 presents some methods for building Delaunay triangulations.
Section 2.5 addresses the problem of dynamically maintaining a triangulation (incremen-
tal site insertion and removal). Section 2.6 presents constrained Delaunay triangulations
(CDT).

1This property also holds for any paraboloid z = ��
�
(x� a)2 + (y � b)2

�
where �, a, and b are constants.

This trivially follows from the fact that a DT is invariant to translations of the input set of sites. The value

of � doesn't matter either since it neither a�ects the topology of the convex hull, nor its projection on the

plane

13

2.1 The Quadedge Data Structure

The quadedge data structure [13] was designed for representing general subdivisions of orien-
table manifolds. It simultaneously represents both the subdivision and its dual. Alternatives
are the double-connected-edge-list (DCEL) [24] and the winged-edge data structures, which
do not hold the dual. The quadedge structure has been preferred because an implementation
was readily available [20].

e

e.Syme.Rot

e.invRot

Figure 2.1: The four directed edges of a quadedge

Each quadedge record holds four directed edges corresponding to a single undirected
edge in the subdivision and to its dual edge. Each directed edge has three references: Org,
which points to the site at its origin, Rot, which points to its dual edge, and Onext, which
points to the counterclockwise next edge in the subdivision. All other topological operators
(see Figures 2.1 and 2.2) can be de�ned in terms of these primitives, as summarized below.

e

e.Lnext
e.Dnext

e.Onext
e.Rnext

e.Sym

e.Lprev

e.Dprev
e.Rprev

e.Oprev

Figure 2.2: Edge navigation operators

Navigation inside a quadedge is achieved with the use of the identity, Rot, Sym, and

14

Rot�1 operators, all of which can be expressed in terms of Rot operations:

e = e

e:Rot = e:Rot

e:Sym = e:Rot2

e:Rot�1 = e:Rot3

(2.1)

where e:Rot means that operator Rot is applied to edge e, and e:Rotn that Rot is applied
n times.

The position of each site in the quadedge can be retrieved with the Org operator:

e:Org = e:Org = e:Org

e:Left = e:Rot�1:Org = e:Rot3:Org

e:Dest = e:Sym:Org = e:Rot2:Org

e:Right = e:Rot:Org = e:Rot:Org

(2.2)

where the middle column represents the de�nition of the operator, and the right column its
expression in terms of primitives.

Onext allows navigation through the subdivision. Movements to neighboring edges are
represented in �gure 2.2. They can be subdivided into two classes, namely counter-clockwise
ones:

e:Onext = e:Onext = e:Onext

e:Lnext = e:Rot�1:Onext:Rot = e:Rot3:Onext:Rot

e:Rnext = e:Rot:Onext:Rot�1 = e:Rot:Onext:Rot3

e:Dnext = e:Sym:Onext:Sym = e:Rot2:Onext:Rot2

(2.3)

and clockwise ones:

e:Oprev = e:Rot:Onext:Rot = e:Rot:Onext:Rot

e:Lprev = e:Onext:Sym = e:Onext:Rot2

e:Rprev = e:Sym:Onext = e:Rot2:Onext

e:Dprev = e:Rot�1:Onext:Rot�1 = e:Rot3:Onext:Rot3

(2.4)

When assuming that the subdivision is a triangulation, it is possible to simplify some of the
operations:

e:Dprev = e:Onext:Rot2:Onext

e:Dnext = e:Rot:Onext2:Rot
(2.5)

The next section presents higher level operators.

2.2 Topological Operators

Starting with the operator set proposed by Guibas and Stol� [13], we have modi�ed it to
make it more symmetrical, and also to eliminate super
uous edge navigation. The parame-
ters of the Connect operator have been changed and its inverse operatorDisconnect is intro-
duced. The latter accommodates some operations that were previously part of DeleteEdge.
As a consequence DeleteEdge has also been changed. Each operator is described in the
next paragraphs.

15

2.2.1 MakeEdge

MakeEdge creates a new quadedge and initializes all of its four directed edges. It takes no
argument and returns the �rst edge of the quadedge. The quadedge is a subdivision by
itself, namely the one of a sphere [13]. The details of the procedure are described below.
The Create operator creates a new directed edge and initializes all its pointers to nil.

begin Edge:MakeEdge

this:Create, e2:Create, e3:Create, e4:Create

this:Onext this,e2:Onext e4, e3:Onext e3, e4:Onext e2
this:Rot e2, e2:Rot e3, e3:Rot e4, e4:Rot this

end

2.2.2 Splice

Splice is the basic operator used to attach and detach edges from each other (see �gure 2.3).
It takes an edge b as parameter and returns no value. It is its own inverse. Its description
is given below.

b

e

e

b

e.Splice(b)

Figure 2.3: The e�ect of the Splice operator

begin Edge:Splice(b)
e1 this:Onext, e2 b:Onext

� e1:Rot, � e2:Rot

e3 �:Onext, e4 �:Onext

this:Onext e2, b:Onext e1
�:Onext e4, �:Onext e3

end

2.2.3 Connect

The Connect operator connects the two vertices of an edge e to respectively two edges a
and b. It takes as argument the two edges a and b, and returns no value. The Connect

16

operator is basically a succession of two Splice operations followed by an update of the Org
�elds. A description is given below.

begin Edge:Connect(a; b)
this:Splice(a)
this:Org a:Org

this:Sym:Splice(b)
this:Dest b:Org

end

This new de�nition of the Connect operator changes in two ways from its original [13]
form: it does not create a new edge any more, and the arguments represent di�erent edges
so that they can directly be applied to both of the Splice operations.

2.2.4 Disconnect

The Disconnect operator is the inverse of the Connect operator. Thus2

e:Connect(a; b):Disconnect(a; b) � e

Its description is given below. Since the Splice operator is its own inverse the Disconnect
operator is quite the same as Connect. The di�erence lies in the update of the Org �elds
(which are reset to nil by Disconnect).

begin Edge:Disconnect(a this:Oprev; b this:Lnext)
this:Splice(a)
this:Org nil

this:Sym:Splice(b)
this:Dest nil

end

2.2.5 Swap

The Swap operator is at the core of the edge swapping algorithm described in section 2.4.1.
To swap an edge is to replace it by the other diagonal of the quadrilateral in which it is
inscribed. Swap is its own inverse and thus e:Swap:Swap � e.

begin Edge:Swap

a this:Lprev

b this:Sym:Lprev

c a:Lprev

d b:Lprev

this:Disconnect(d; c)
this:Connect(b; a)

end

2The relation only holds if e:Org = e:Dest = nil

17

2.2.6 DeleteEdge

The DeleteEdge operator undoes everything the MakeEdge operators does, as described
below.

begin Edge:DeleteEdge

e2 this:Rot, e3 e2:Rot, e4 e3:Rot

this:Rot nil, e2:Rot nil, e3:Rot nil, e4:Rot nil

this:Onext nil, e2:Onext nil, e3:Onext nil, e4:Onext nil

this:Destroy, e2:Destroy, e3:Destroy, e4:Destroy

end

Putting references to nil and then Destroy-ing edges clearly is redundant. The reason
both appear in the pseudocode it that languages such as C++ require the latter, whereas
languages featuring automatic garbage collection require the former.

2.3 Geometrical Operators

Geometrical operators are de�ned to test the relative positions of points and edges. There is
also an InCircle operator which tests whether a point lies inside the circle de�ned by three
other points, and which is one of the most important operators for constructing Delaunay
triangulations.

2.3.1 OnRight, OnLeft and OnEdge

The OnRight, OnLeft and OnEdge operators tell if a given point is respectively to the
right of, to the left of, or on an edge. The decision is based on the sign of the signed area
of the triangle de�ned by the two vertices of the edge and the point to test.

begin Edge:OnRight(p)
return (p� this:Org)� (this:Dest� this:Org) > 0

end

begin Edge:OnLeft(p)
return (p� this:Org)� (this:Dest� this:Org) < 0

end

begin Edge:OnEdge(p)
return (p� this:Org)� (this:Dest� this:Org) = 0

end

where � is the cross product between two vectors.

2.3.2 InCircle

Given an edge e and two points i and j, the InCircle operator returns true if and only if
the circle de�ned by i and the two vertices of e includes j. It tells whether an edge should
be swapped or not. This test is at the heart of most Delaunay triangulation algorithms, and
is
oating point intensive. In practice it is important to optimize it. Three di�erent ways
of performing the test are presented, and their speed is evaluated.

18

Circle Test

The naive way is to compute the position of the center and the radius of the circle, and then
check if the distance from its center to j is less than its radius. The center of the circle lies
at the intersection of the two lines that respectively bisect e:Org and i, and e:Dest and i.
These two lines can be expressed as

n1 � x� c1 = 0

n2 � x� c2 = 0

where n1 = e:Org� i is a normal to the �rst line and c1 = 1

2
(e:Org+ i) �n1 is a constant.

n2 and c2 are similarly de�ned for the second line. The two equations can be combined into
a single matrix equation Nx � c = 0. The solution of which is x = N�1c, where x is the
intersection of the two lines, and thus the center of the circle.

The InCircle test then summarizes to

jx� jj < jx� ij

To compute the center of the circle, 11 multiplications, 13 additions, and 2 divisions
are required. The distance test requires additional 6 additions and 4 multiplications. The
total cost is thus 15 multiplications, 19 additions, and 2 divisions. It is possible to avoid
the divisions at the cost of four extra multiplications (by multiplying everything by the
determinant of N).

Convex Hull Test

A better way might be to consider some other properties of Delaunay triangulations. The
convex hull test is based on the nice relation between Delaunay triangulations and 3-
dimensional convex hulls. The test is based on the sign of the signed volume of the tetra-
hedron de�ned by the projection of the four points on a paraboloid:��������

x1 y1 x21 + y21 1
x2 y2 x22 + y22 1
x3 y3 x23 + y23 1
x4 y4 x24 + y24 1

��������
> 0 (2.6)

where (x1; y1) = e:Org, (x2; y2) = e:Dest, (x3; y3) = i, and (x4; y4) = j. When naively
computed, this determinant requires 48 multiplications and 27 additions. A good idea is to
consider that the last column is �lled with ones to reduce the cost to 20 multiplications and
24 additions, as in the code proposed by Lischinski [20].

It is possible to improve this result by translating all the points by a same amount, so
that one of the points lies at the origin (0; 0):

��������
0 0 0 1
~x2 ~y2 ~x22 + ~y22 1
~x3 ~y3 ~x23 + ~y23 1
~x4 ~y4 ~x24 + ~y24 1

��������
> 0 (2.7)

19

where ~xi = xi � x1, ~yi = yi� y1 and the paraboloid is ~zi = (xi �x1)2+ (yi� y1)2. The test
is thus equivalent to: ������

~x2 ~y2 ~x22 + ~y22
~x3 ~y3 ~x23 + ~y23
~x4 ~y4 ~x24 + ~y24

������ > 0 (2.8)

which requires only 15 multiplications and 14 additions.

Angle test

It also possible to de�ne a test based on angles3: if the sum of angles � and � (see �gure 2.4)
is smaller than 180 degrees, then the edge should be swapped. Another way to put it is
sin(�+ �) > 0? This expression can be simpli�ed in the following way:

sin(�+ �) = sin� cos� + sin� cos�

=
a� b

jaj � jbj �
c � d
jcj � jdj +

c� d

jcj � jdj �
a � b
jaj � jbj

/ (a� b)(c � d) + (c� d)(a � b) (2.9)

This test only requires 10 multiplications and 13 additions.

a
b

c
d

e

α

β

j

i

Figure 2.4: The InCircle test

Summary

From the several ways of performing the InCircle test that have been examined, the angle
test is fastest, followed by the convex hull test, and the circle test. The operator is thus
de�ned using the angle test:

3Thanks to Marshall Bern for pointing it out

20

begin Edge:InCircle(p e:Onext:Dest; q e:Oprev:Dest)
a q � this:Org

b p� this:Org

c p� this:Dest

d q � this:Dest

return (a� b)(c � d) + (c� d)(a � b) > 0
end

2.4 Triangulation Algorithms

Several methods are known for triangulating the convex hull of a set of points, namely the
ip
algorithm, the incremental algorithm, the divide-and-conquer algorithm and the sweepline
algorithm. The �rst two are the topic of the next sections. The divide-and-conquer and
sweepline algorithms are only brie
y described because they haven't been used in the frame
of this work.

In the divide-and-conquer algorithm, the input site set is �rst sorted by x-coordinate
and split vertically in two subsets of equal size. The Delaunay triangulation is computed
recursively for each subset. Subsets are then merged using a sweeping circle algorithm. A
complete description is given in [13]. The time complexity of the algorithm is O(n logn).

The sweepline algorithm is due to Fortune [9]. In a comparison with divide-and-conquer,
Leach [18] has optimized both algorithms and measured execution speed. According to
Leach, the sweepline algorithm is the fastest, but also appears to be the least robust.

2.4.1 The Edge Swapping Algorithm

Given an initial triangulation, the edge swapping algorithm maintains a queue of edges that
might fail the circumcircle test. An edge e is said to pass the circumcircle test if the circle
through fe:Org; e:Dest; e:Onext:Destg does not include the point e:Oprev:Dest. In the
initial triangulation, any edge might fail the test, so the queue initially contains all edges.
Then, the �rst edge e is repeatedly removed from the queue. If e does pass the circumcircle
test, the next edge is dequeued. But if e does fail the test, it is swapped. As this operation
might change the status of some of the four edges of the quadrilateral of which e is a diagonal,
those edges are added into the queue if not already there. The algorithm stops when the
queue is empty.

The algorithm always terminates after O(n2)
ips. Combined with an O(n2) algorithm
for constructing the initial triangulation, the Delaunay triangulation of a set of points can
be found in O(n2) time with this method.

2.4.2 The Incremental Algorithm

The incremental algorithm was �rst proposed by Lawson [17]. It starts with a triangle
large enough to contain all the points of the input set (ideally the three vertices are at
in�nity). Points are added into the triangulation one by one, maintaining the invariant that
the triangulation is Delaunay. First the triangle T containing the new point p is located.
New edges are created to connect p to the vertices of T . The edges of T are inspected to
verify that they still satisfy the circumscribing circle condition. If the condition is satis�ed
the edge remains unchanged. If it is violated the o�ending edge is swapped. In this case

21

two more edges become candidates for inspection. The process continues until no more
candidates remain.

If the order of insertion is randomized, and with use of appropriate data structures
for point-in-triangle location, it can be shown [14] that the expected running time of the
algorithm is O(n log n). However, without any additional data structure, jump-and-walk
methods can be used to reach an expected time of O(n4=3) [6].

2.5 Dynamic Maintenance of a Triangulation

The problem of dynamically maintaining the triangulation can be divided into two sub-
problems: insertion and removal of a site. Moving a site can be seen as a removal followed
by an insertion.

2.5.1 Site Insertion

The procedure for inserting a point i runs as follows:

1. locate the triangle T in which i lies

2. add an edge from i to each vertex of T

3. put the three edges of T on a queue

4. while the queue is non-empty, remove the �rst edge e from the queue. If e does pass the
circumcircle test, the next edge is dequeued. If e fails the test, swap it, and insert in
the queue the two edges a and b adjacent to e which do not contain i (see Figure 2.5).

e e
a b

i i
e.Swap

Figure 2.5: Edge swapping during point insertion

It is usually assumed that points are in general position, that is that no three points are
collinear or four points cocircular. In practice however this is not the case. As a result the
insertion of a site i on an edge e (three colinear point) has to be treated in a special way.

1. remove the edge e. i then lies inside a quadrilateral Q

2. add an edge from the i to each vertex of Q which is the containing quadrilateral

3. put the four edges of Q on a queue

Step 4 is identical to the one for general position point insertion. A more detailed
description of the point insertion routine is given in �gure 2.6.

The number of edge
ips is equal to the degree of i after its insertion. As the average
degree of a vertex in a planar graph is less than six, the average cost of step 4 is O(1). Worst

22

begin Insert(p)
e Locate(p)

if e:OnEdge(p) then
e e:Oprev

e:Onext:DeleteEdge

base MakeEdge

base:Splice(e)
base:Org p

base:Dest p

b base:Sym

loop

a base:Lprev

if a = e then

exit loop

base MakeEdge

base:Connect(a; b)

e base

do

a e:Onext

b a:Onext

while a:InCircle(b:Dest; p) do
a:Swap

a b

b a:Onext

e e:Dprev

while e 6= base

end

Figure 2.6: Point insertion procedure

case is O(n) and happens, for example, when i is inserted at the center of n points lying on
a circle.

The point location cost (step 1) can be reduced to O(logn) time with appropriate O(n)-
space data structures [14]. Without additional data structures a simple walking method
can be used to achieve an expected O(

p
n) time performance. A fast walking method is

described in the next section.

The total cost of an insertion is thus dominated by the cost of the point location proce-
dure.

2.5.2 Walking Method for Point Location

Guibas and Stol� [13] have proposed a simple walking method for point location, which
Lischinski has implemented [20]. An improved version where redundant tests have been

23

removed is described by a �nite state automaton in Figure 2.8. At any time the point to
locate is on the left of the current edge. Figure 2.7 shows the two possible movements at
each step. Performance is compared in Table 2.1 in terms of function calls. It turns out
that the new algorithm is more than twice as fast as the original one.

10000 locations 100000 locations

Procedure Guibas Bossen ratio Guibas Bossen ratio

Edge:RightOf 207.8 90.7 2.29 657 277 2.37

Point: = 167.7 78.1 2.15 531 243 2.18

Edge:Onext 126.1 44.1 2.86 403 137 2.94

Edge:Dprev 80.1 43.6 1.84 251 137 1.83

Edge:Org 83.9 39.1 2.15 265 122 2.17

Edge:Dest 83.9 39.1 2.15 265 122 2.17

Edge:Sym 0.52 0.62 0.84 0.40 0.62 0.65

Total4 374.5 166.5 2.25 1183 519 2.27

Table 2.1: Guibas versus Bossen point location performance (listing the number of calls to
each procedure, per insertion)

e

e.Onext

e.Dprev

Figure 2.7: The two possible walking directions

2.5.3 Site Removal

Unfortunately removing a site i is not as easy as inserting one. Although it can be simple
when using appropriate data structures and removing the last inserted point [16], the general
case is more di�cult to handle. The procedure description is still very short:

1. remove all the edges e such that e:Org = i

2. delete i

3. triangulate the simple polygon which contained i

4Sum of all topological operations calls

24

begin Locate(p)
s0: e some edge f such that :f:RightOf(p)

goto if e:Org = p _ e:Dest = p then s7 else s1

s1: f e:Onext

goto if f:RightOf(p) then s4 else s6

s2: f e:Dprev

goto if f:RightOf(p) then s3 else s5

s3: f e:Onext

goto if f:RightOf(p) then s7 else s6

s4: f e:Dprev

goto if f:RightOf(p) then s7 else s5

s5: e f

goto if e:Org = p then s7 else s1

s6: e f

goto if e:Dest = p then s7 else s2

s7: return e

end

Figure 2.8: Triangle location procedure

The cost of a deletion is O(n2) (see next section on simple polygon triangulation), where
n is the degree of site i. As the degree i is expected to be less than six on average, the
asymptotic time is not relevant in practice.

2.5.4 Triangulation of a Simple Polygon

We consider here the case of a hole (simple polygon) inside a triangulation that needs to
be retriangulated. Triangulating the simple polygon is not as easy as one would like it
to be since the polygon cannot be assumed to be convex. A simple solution is to build
a triangulation of the polygon by successively cutting o� ears5, and then run the edge
swapping algorithm.

The time cost of the retriangulation is O(n2), where n is the number of sites of the hole.

2.6 Constrained Delaunay Triangulations

A constrained Delaunay triangulation (CDT) is very similar to a Delaunay triangulation.
The di�erence is that some edges are �xed (constrained). They cannot be swapped even if
they do not pass the InCircle test.

5An ear is a triangle which shares two edges with the polygon to be triangulated

25

The methods for generating a constrained triangulation are quite similar to the ones used
for unconstrained triangulations. The edge swapping algorithm for instance starts with a
triangulation where all constrained edges are present, then runs as usual but a constrained
edge is never swapped.

There are also O(n logn) algorithms for generating constrained Delaunay triangulation
such as divide-and-conquer [4], but they are usually di�cult to implement. The next section
presents an asymptotically slower incremental algorithm which is easier to implement.

2.6.1 An Incremental CDT Algorithm

The present algorithm for building constrained Delaunay triangulations can be split in two
phases. In the �rst one, the constraints are ignored, and a triangulation is built using the
incremental algorithm described in section 2.4.2. In the second phase, the constrained edges
are inserted one by one, if not already present. First all the edges crossing the constrained
edge are removed, then the constrained edge is inserted, and �nally the simple polygons
on each side of the constrained edge are retriangulated. The procedure for removing the
crossing edges and inserting the constrained edge is described in Figure 2.9.

begin InsertConstraint(c)
�nd an edge e such that e:Org = c:Org

while :(e:OnLeft(c:Dest) _ :e:Onext:OnLeft(c:Dest))
e e:Onext

e0 e

do

f e:Lnext

while c:OnLeft(f:Dest) do
f:Remove

f e:Lnext

e f

while e:Dest 6= c:Dest

e e:Lnext

c:Splice(e0)
c:Sym:Splice(e)
retriangulate the hole on the left of c
retriangulate the hole on the right of c

end

Figure 2.9: The InsertConstraint procedure

26

Chapter 3

A World of Particles

This chapter describes a system of interacting particles that is used to uniformly spread
points over a domain. At any time the set of points de�ned by the positions of the particles
is triangulated using the Delaunay criterion. The goal is to generate a particle distribution
such that every edge in the mesh has a length equal to �̂, which is a constant. As this
optimality criterion is usually not achievable because of constraints at the boundaries of the
domain, we try to get as close to it as possible. A particle interaction scheme is shaped
according to following objectives:

� Simplicity. The system should be governed by a small set of simple rules.

� Speed. The computational cost for performing one time step should be low (O(1)).
Interactions should be local, so that each particle directly interacts with only a small
neighborhood. This neighborhood can be de�ned based on the topology of the trian-
gulation. Also the convergence should be fast. A minimal amounts of time steps
should be taken before the system reaches equilibrium.

� Robustness. The algorithm should always converge.

� Quality. The resulting mesh should locally match the desired edge length. For now
we will consider this length equal to �̂, which is de�ned by the user. In a more
sophisticated scheme, the implicit geometric feature size [25] could also be considered.

The chapter is structured as follows. Section 3.1 introduces the general dynamics of the
interaction model. Section 3.2 de�nes the interaction neighborhood. Section 3.3 presents
di�erent potential functions. Section 3.4 de�nes a model for controlling the particle popu-
lation. Section 3.5 presents some improvements regarding speed. Finally, results are shown
in Section 3.6.

3.1 Interaction Model

Whereas in Nature and in some previously implemented models [27, 29], the motion of the
particles is de�ned by a second order di�erential equation (m�x =

P
i F

i(x; _x)), we for now
consider a simpler, �rst order model, as used in [34]. Although �rst order models are more

27

likely to get stuck in local minima, they are generally numerically more stable. The motion
of the particles can be expressed as

dx

dt
= rxE + C (3.1)

where x is the 2n-vector containing the 2-dimensional positions of all n particles, rxE the
gradient of the potential energy �eld, and C the set of forces imposed by domain boundary
conditions.

The behavior of the system highly depends on the choice of the energy potential function
E, which can be expressed as the sum of the potential energies between each pair of particles:

E =
X
i

X
j

Eij (3.2)

where Eij is the potential energy of particle i due to particle j. Eij = �̂2�(dij=�̂), where
� is the potential function, depends only on the distance dij between particles i and j, and
the desired edge length �̂, thus

rxkE
ij � 0 if i 6= k and j 6= k (3.3)

and

rxiE
ij = � �̂

dij
�0
�
dij

�̂

�
rij (3.4)

where rij = xj�xi is de�ned as the displacement vector between particles i and j, xk being
the position of particle k.

Symmetry is also a desirable feature, thus

Eij = Eji (3.5)

Finally, interactions are local. Particle i only interacts with a neighborhood N i, thus

Eij � 0 if j =2 N i (3.6)

Now that the properties of the energy functions are better de�ned, it is possible to say
more about its gradient:

rxiE = rxi

X
j

X
k

Ejk

=
X
j

X
k

rxiE
jk

=
X
j

rxiE
ji +

X
k

rxiE
ik

=
X
j

(rxiE
ji +rxiE

ij)

and since Eij = Eji:
rxiE = 2 �

X
j

rxiE
ij (3.7)

28

Also, particle i only interacts with particles within a neighborhood N i:

rxiE = 2 �
X
j2Ni

rxiE
ij = �2

X
j2Ni

�̂

dij
�0
�
dij

�̂

�
rij (3.8)

To simplify the above expression, we de�ne �ij = dij=�̂ as the \normalized" distance
between particles i and j:

rxiE = �2
X
j2Ni

�0(�ij)

�ij
� rij (3.9)

Several potential functions � are discussed in Section 3.3.

3.1.1 Boundary Conditions

Boundary condition forces are necessary to make sure that no particle moves outside the
domain. When a particle i is on a constrained vertex, its motion should be zero, thus
Ci = �rxiE. If it lies on a domain boundary, motion should be constrained to the edge it
lies on, thus Ci = �(n � rxiE) � n where n is a unit vector normal to the boundary. For all
other particles Ci = 0.

3.1.2 Numerical Resolution

To solve the motion equation 3.1, numerical integration can be achieved with Euler's method:

x(t+�t) = x(t) + �t � (rxE + C) (3.10)

The notion of time can be eliminated and the process expressed in a more algorithmic
fashion as

x x+ � � (rxE + C) (3.11)

Thus for each particle i we have

xi xi + � � (rxiE + Ci) (3.12)

3.1.3 Asynchronous Updating

Although it is common usage to update the positions of the particles synchronously, we
proceed in an asynchronous manner:

loop

randomly pick a particle i
compute rxiE and Ci

xi xi + � � (rxiE + Ci)
update the triangulation

where the triangulation update step is performed by �rst removing site i and then reinserting
it at its new position (see Section 2.5 on moving sites). Most of the time the topology of the
mesh remains unchanged, sometimes the motion of the particle can result in the swapping
of one or several edges in the triangulation.

This asynchronous scheme has several advantages over a synchronous one, namely

29

� it introduces some noise into the system and reduces the chances of reaching a local
minimum

� it opens the possibility of biasing the pick and accelerating the convergence (more on
this in Section 3.5)

3.1.4 Second Order Model

Although �rst order integration is nice and simple, its performance can be poor, as the
system often converges to a not so good local minimum. To overcome this problem, a
second order model is introduced. Its formulation is rather non-standard but it is easy to
implement, and doesn't seem to su�er from numerical instabilities.

vi � � vi +rxE + C

xi xi + � � vi (3.13)

The velocity vector vi can be seen as a bu�er which accumulates the forces, and which
decays exponentially. The di�erential equation associated with this model is of the form

�x+ k � _x = rxE + C

3.2 Interaction Neighborhoods

In previous work [34, 27, 30, 29] the interaction neighborhood of a particle i was de�ned
based on geometrical properties. The neighborhood was de�ned by a sphere with a radius
equal to some constant times the desired edge length. The set of particles N i interacting
with a particle i was expressed as

N i
c�̂ =

�
j j i 6= j; dij < c�̂

	
where dij is the distance between particles i and j, and c is a constant, typically between
1.5 and 2. For fast location of the particles within N i

c�̂, k � d trees [29], buckets or some
other additional data structures are used. In the present case, however, a triangulation is
already provided, and it is thus easy to de�ne a neighborhood based on topology instead
of geometry. The distance between two particles i and j is then de�ned by the number of
edges in the shortest path between i and j in the triangulation. The set of particles N i

interacting with a particle i becomes

N i
k = fj j i 6= j; 9path between i and j of length � kg

In practice small neighborhoods are desirable, so only path lengths of k = 1; 2 are
considered. Using the quadedge terminology from Chapter 2, these neighborhoods are (also
see Figure 3.1):

N i
1 = fj j 9e : e:Org = i; e:Dest = jg (3.14)

N i
2 = fj j i 6= j; 9e; f : e:Org = i; e:Dest = f:Org; f:Dest = jg (3.15)

The size of the neighborhoods are typically 6 for N1, and 18 for N2. Since they are both
O(1) in size, an update operation as described in Section 3.1.3 requires only O(1) time,
whereas it would take O(n) if all particles interacted with all others.

30

N1 N2

Figure 3.1: Two di�erent sizes of neighborhoods

It is of course also possible to de�ne a neighborhood based on geometrical and topological
properties.

3.3 Potential Functions

This section presents several potential functions that have been used in the past, but also
introduces new ones. All potential functions should ful�ll the following desirable properties:

� C1 continuity. The function and its �rst derivative should be continuous functions

� no singularities. The function should have �nite values for any �nite inter-particle
distance.

3.3.1 Requirements at Equilibrium

The optimal particle arrangement is a regular array of equilateral triangles with edge length
of �̂. The forces between particles should be de�ned so that this pattern is an equilibrium.
Moreover the equilibrium should be stable, that is, if the positions of the particles are slightly
altered, they should move back to the optimum.

These considerations should also hold for particles near or on the boundaries of the
domain. If particles on the boundaries are constrained to stay on it, no problem arises. But
particles which are one edge length away from the boundary are not at equilibrium if the
neighborhood is N2 or larger: if the particles repel each other at distances larger than �̂,
they tend to drift towards the boundary, and in the reverse direction if the interaction is
attractive. Thus, to guarantee optimality near the boundaries the interaction neighborhood
should be N1.

On the other hand N2 neighborhoods are more powerful at organizing particles away
from the boundaries. A tradeo� must thus be found between quality near the boundaries
and elsewhere. As the e�ects depend a lot on the choice of the potential energy function,
we empirically search for the best solution for each function.

31

3.3.2 Gaussian Potential

Witkin and Heckbert [34] used a Gaussian potential function to spread particles on implicit
surfaces (Figure 3.2):

�(�ij) = exp
��2(�ij)2�

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Potential �(�ij) Derivative �0(�ij)

Figure 3.2: Gaussian potential function

This model works well with N2 neighborhoods but fails to arrange particles into the
desired pattern with N1. Originally Witkin and Heckbert used N1:5�̂ neighborhoods.

Instead of having the potential be a Gaussian function, it is possible to have it be the
derivative of a Gaussian (Figure 3.3):

�(�ij) = �ij exp

�
� (�

ij)2

2

�
(3.16)

of which the derivative is

�0(�ij) = (1� (�ij)2) exp

�
� (�

ij)2

2

�
(3.17)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.5 1 1.5 2 2.5 3
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

Potential �(�ij) Derivative �0(�ij)

Figure 3.3: Gaussian derivative potential function

This new scheme generates regular patterns for N1 and N2 neighborhoods.

32

3.3.3 Lennard-Jones Potential

One of the most widely used interaction model [29, 27] is based on the Lennard-Jones
potential, or van der Waals force which is inspired from molecular chemistry. The potential
is de�ned as (Figure 3.4)

�(�ij) = 12(�ij)6 � 6(�ij)12 (3.18)

-1

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Potential �(�ij) Derivative �0(�ij)

Figure 3.4: Lennard-Jones potential function

The problem with such a model is the singularity at �ij = 0 (�0(0+) !1). Numerical
integration can thus be disastrous.

Shimada [27] has de�ned a potential function with a similar shape but which overcomes
the singularity problem (Figure 3.5):

�0(�ij) =
5

4

�
�ij
�3 � 19

8

�
�ij
�2

+
9

8
(3.19)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Potential �(�ij) Derivative �0(�ij)

Figure 3.5: Shimada's potential function

Shimada used N1:5�̂ , but this scheme also works with N1 and N2.

Other approximations of the Lennard-Jones potential function are possible, such as (Fi-
gure 3.6)

�0(�ij) = (1� (�ij)4) exp(�d(�ij)4) (3.20)

33

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

Derivative �0(�ij)

Figure 3.6: New Lennard-Jones approximation

3.3.4 Laplacian Smoothing

Laplacian smoothing [8] is a widely used technique for improving the shape of triangles in
a mesh. In particle terminology, Laplacian smoothing consists of moving a particle i to the
centroid of its neighbors. Its displacement can be expressed as

�xi =

0
@ 1��N i

1

�� X
j2Ni

1

xj

1
A� xi =

1��N i
1

�� X
j2Ni

1

(xj � xi) =
1��N i
1

�� X
j2Ni

1

rij

As the displacement is proportional to the derivative of the potential, the latter can be
de�ned as (Figure 3.7)

�0(�ij) = �1
2

(3.21)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Potential �(�ij) Derivative �0(�ij)

Figure 3.7: Laplacian potential function

3.3.5 Error Potentials

Another way of putting the problem is to de�ne a quality measure of the mesh and consider
the particle interaction as an optimization process by gradient descent.

34

We here de�ne two quality measures. The �rst one is based on the di�erence between
the actual and the optimal distances between particles (Figure 3.8):

�(�ij) = �1
2
(�ij � 1)2 (3.22)

of which the derivative is

�0(�ij) = 1� �ij (3.23)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Potential �(�ij) Derivative �0(�ij)

Figure 3.8: Error potential function

The second quality measure is based on the ratio of the distances (Figure 3.9):

�(�ij) = �1
2
log2 �ij (3.24)

Although this de�nition can seem obscure at �rst, one can easily verify that error is the
same for dij = � � �̂ and dij = 1

�
� �̂, that is, edges that are too long or too short by a factor

� are equally penalized. The derivative of the potential is:

�0(�ij) =
log�ij

�ij
(3.25)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Potential �(�ij) Derivative �0(�ij)

Figure 3.9: Error potential function

The natural interaction neighborhood of these potentials is N1.

35

3.3.6 Which is best?

Empirical testing has led to the following conclusions:

� models that are attractive and repulsive perform better than the ones that are attra-
ctive only or repulsive only

� the N2 neighborhood does a better job at arranging particles to create equilateral
triangle away from the boundaries. . .

� . . . but performs rather poorly near the boundaries

In practice a Lennard-Jones like scheme, such as the proposed approximations, seems
best.

3.4 Adaptive Population Control

Generally it is not known a priori how many particles are needed for the edges to conform
the desired size. The number could be determined from the area of the domain, but there
are several disadvantages to this strategy:

� when generalizing to surfaces in 3-D or to a non-uniform desired edge length, it is
di�cult to correctly estimate the area.

� even if one knew how many particles are needed to optimally �t the domain, the
question would remain of where to put them. If the initial con�guration is poor, it
can take a long time for the system to reach a reasonably good con�guration.

An alternative strategy is an adaptive scheme where new particles are created where
their density is too low, and others are annihilated where too high. The problem thus
becomes to evaluate particle density. In a �rst step we will consider the 1-dimensional case,
and then generalize to two dimensions.

3.4.1 1-D Algorithm

Let S be a set of edges, and L(S) the sum of the normalized lengths1 of each segment in S.
Ideally L(S) should be equal to L̂(S) = jSj.

The particle density of S is de�ned as �(S) = L̂(S)=L(S). The density error measure
associated with S is de�ned to be

"(S) =

�
�(S) if �(S) > 1
1=�(S) otherwise

(3.26)

Creation Rule

Let S be composed of one edge e, and S0 the set of the two halves of e after a particle has
been inserted at its middle point. A particle is inserted if "(S0) < "(S). We know that
L(S) = L(S0) = jjejj, jSj = 1, and jS0j = 2. Thus a new particle should be inserted if
jjejj > p2, where jjejj is the normalized length of edge e.

1the normalized length is de�ned to be the actual length divided by �̂

36

Annihilation Rule

Let S be the two edges e1 and e2 on each side of a particle p. Let S0 be a set containing the
concatenation e of e1 and e2 after removal of p. Particle p is annihilated if "(S0) < "(S).
We know that L(S) = L(S0) = jje1jj + jje2jj, jSj = 2, jS0j = 1. Thus particle p should be
annihilated if jje1jj+ jje2jj <

p
2, where jjeijj is the normalized length of edge ei.

3.4.2 2-D Algorithm

Let T be a set of triangles, and A(T) the sum of the normalized areas2 of each triangle in
T . Ideally A(T) should be equal to Â(T) = jT j4, where 4 =

p
3=4 is the area of a unit

equilateral triangle.
The particle density of T is de�ned as �(T) = Â(T)=A(T). The density error measure

associated with T is de�ned to be

"(T) =

�
�(T) if �(T) > 1
1=�(T) otherwise

(3.27)

Creation Rule

Let T be the set of the triangles on each side of an edge e, and T 0 the set of triangles incident
to the two halves of e after a particle has been inserted at its middlepoint. A particle is
inserted if "(T 0) < "(T). We know that A(T) = A(T 0), jT j = 2, and jT 0j = 4. Thus a new
particle should be inserted on e if A(T) >

p
3=2.

A more sophisticated rule takes into consideration the local optimization of the topology
(Delaunay triangulation) after insertion. The average degree of a node inside a mesh is 6,
and jT 0j should thus be 6. Since it would be costly to compute the areas of the triangles
after the local optimization, we consider two virtual triangles which are a�ected by the edge
swapping. Let U be the set T augmented by two virtual triangles of ideal size, and U 0 the
set U augmented by the two same virtual triangles. We know A(U) = A(U 0) = A(T) + 24,
jU j = 4, and jU 0j = 6. Thus a new particle should be inserted on e if A(T) > 3=

p
2�p3=2.

Annihilation Rule

Let T be the set of triangles incident to a particle p. Let T 0 be set of triangles resulting
from the retriangulation of the region covered by T . Clearly p should be annihilated if
"(T 0) < "(T). We know that A(T 0) = A(T) and jT 0j = jT j � 2. Thus particle p should be
annihilated if A(T) <

p
3jT j(jT j � 2)=4.

3.4.3 Combination of 1-D and 2-D rules

The rules that are actually used in our algorithm are a combination of 1-dimensional and
2-dimensional rules. Let i be the particle that is picked at the given step.

First, the annihilation rules are considered. If the particle i lies on a boundary, then the
1-D rule in applied. Otherwise the 2-D rule is applied.

If the particle is not annihilated, the creation rules are considered for all the edges
that are connected to particle i. If several edges are candidates for insertion, the one that
maximizes the improvement in particle density is selected for splitting.

2the normalized area is de�ned to be the actual area divided by �̂2

37

3.4.4 Initial Population

The initial population corresponds to the sites of the PSLG de�ning the domain. These
particles are never moved or annihilated so that the triangulation always remains confor-
ming.

3.5 Speeding up the Process

Since the particles are moved one by one, it is possible to de�ne a heuristic so that the ones
that \need" to be moved �rst are indeed moved �rst. The introduction of an alive
ag for
each particle can lead to a simple heuristic:

� all the particles are initially alive

� when an alive particle p is picked and updated, if its normalized speed jvpj=�̂ is larger
than a threshold, all of its dead neighbors become alive. If the speed is too low, p is
marked dead.

� when a particle p is annihilated, all of its dead neighbors become alive.

� when a particle p is created, p and all of its dead neighbors become alive.

� a dead particle is never picked. Consequently, particles don't move while they are
dead.

More complex schemes have been tested such as assigning picking probabilities to each
particle proportional to their speed or their total energy (kinetic and potential). Preliminary
results have shown no improvement over the simple scheme. Moreover the computational
cost of such a method is high (time cost for one step would be O(logn) instead of O(1)).

3.5.1 Ending the simulation

The heuristic de�ned in the previous section allows a very simple test to end the simulation:
end when no more particles are alive.

3.6 Results

In this section we brie
y present results for a simple mesh. The domain that is meshed is
a unit square, and the desired edge length is set to �̂ = 0:02. The mesh we have obtained
with an approximated Lennard-Jones potential (Equation 3.20) is depicted in Figure 3.10.

The angle and normalized edge length histograms show that the elements are close to
optimality (i.e. 60 degree angles, and unit normalized edge length).

38

0

200

400

600

800

1000

1200

0 50 100 150 200

Angle histogram

0

50

100

150

200

250

300

350

400

450

500

550

600

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Normalized edge length histogram

Figure 3.10: A simple mesh

39

40

Chapter 4

Interlude: Delaunay

Triangulations with Java

Many people are unfamiliar with computational geometry and Delaunay triangulations. The
World Wide Web appears to be a good tool to familiarize those people with these concepts.
And as learning is often easier when playing games, we have designed an interactive Delaunay
triangulator using the Java programming language developed by Sun [12]. It allows all people
using a Java enabled browser such as Netscape NavigatorTM 2.0 to build a triangulation by
interactively inserting and removing sites. The triangulator can be found at:

http://www.cs.cmu.edu/~bossen/triangulator.html

Complete user instructions are given on the web page.
The algorithm that has been implemented is the incremental one. When the user adds

a new point, it can simply be inserted into the triangulation. When a point is removed the
whole triangulation is rebuilt1. The quadedge data structure has been used to represent the
triangulation. This choice is justi�ed by the fact that the Voronoi diagram is also computed
and displayed.

1Although not very e�cient, this solution was easier to implement

41

42

Chapter 5

Anisotropic Meshes

In this chapter we generalize the particle-based mesh generation method described in Cha-
pter 3 to nonuniform, isotropic and anisotropic, meshes. The feature size is no longer a
constant �̂, but is position{dependent and direction{dependent.

In strongly directional phenomena such as shocks and limit layers in
uid
ows, the
elements should not only adapt in size but also in shape. They should be stretched in the
direction of the
ow. The desired edge length depends on its orientation, hence the name
anisotropy. A metric tensor is introduced to quantify the stretching of the triangles at every
point in the domain. It re
ects the curvature of the function that is approximated.

Relatively little work has been done on anisotropic meshes. D'Azevedo [5] has proposed
the use of coordinate transformations to generate optimal triangulations. Although very
elegant, his method is limited to metric tensors that represent a
at space (the Riemann-
Christo�el tensor [28], that is the curvature of the space represented by the metric, should
be zero). Another weakness of his method is poor meshing at boundaries.

Peraire et al. [23], and later Mavriplis [22] introduced stretching vectors to quantify the
anisotropy, which really are eigenvectors of the metric tensor, but never formally introduced
the latter. Greedy insertion algorithms have been proposed by researchers at INRIA [3, 31].
We believe that better node positioning can be achieved.

This chapter is structured as follows. Section 5.1 introduces some concepts of Rieman-
nian geometry. Section 5.2 exposes the changes made to the triangulation procedure due
to anisotropy. Section 5.3 presents an anisotropic version of the particle interaction mo-
del described earlier. Section 5.5 summarizes the meshing algorithm. Section 5.4 presents
background meshes which are convenient for representing the metric. Section 5.6 shows how
to derive the metric M for a given function f that the mesh should adapt to. Section 5.7
shows how the mesh can incrementally be adapted to a function when no a priori knowledge
of the solution is available.

5.1 Riemannian Geometry

In Euclidean geometry, the de�nition of distances is isotropic and very simple. Riemannian
geometry describes \warped" or curved spaces. In Riemannian geometry, the anisotropy of
distance is de�ned by a metric tensor M . This tensor quanti�es the desired stretching of
the triangles in the mesh. M is a symmetric 2 by 2 matrix, and both of its eigenvalues �1
and �2 are positive:

43

M =

�
cos � sin �
� sin � cos �

��
�1 0
0 �2

��
cos � � sin �
sin � cos �

�
(5.1)

If both the eigenvalues are equal to 1, then M = I and the space is Euclidean. If M is
considered locally constant, the unit ball is the ellipse pxTMx = 1. The �rst axis of the
ellipse has length r1 = 1=

p
�1, and makes an angle � with any horizontal line. The second

axis has length r2 = 1=
p
�2 (Figure 5.1).

θ
r1

r2

Figure 5.1: Elliptic unit ball

In Riemannian geometry, the basic geometrical operators are rede�ned. The dot product
becomes

aTM b (5.2)

and the cross product p
detM(a� b) (5.3)

where a� b = a1b2 � a2b1 is the 2-dimensional cross product.

5.1.1 Computing Distances

In Riemannian geometry, the length of a parametric curve �(t) between points i and j,
where t 2 [0; 1], �(0) = xi, and �(1) = xj is de�ned as

`(�) =

Z 1

0

q
_�(t)TM(�(t)) _�(t) dt (5.4)

where _� = d�
dt
. The distance between two points is the length of the shortest parametric

curve �. Such a curve is called a geodesic. Computing the geodesic for an arbitrary metric
is not trivial. It is simpler to approximate the distance by computing the length of a simple,
non-guaranteed shortest, path. Integrating along the straight line �(t) = xi + t � (xj � xi)
seems reasonable. If M varies linearly between i and j then the distance between the two
points can be de�ned as

dij =

Z 1

0

q
rijT (M i + t(M j �M i))rij dt

=

Z 1

0

q
(diji)

2 + t((dijj)
2 � (diji)

2) dt (5.5)

44

where dijk =
p
rijTMkrij is the distance as \seen" from point k. With appropriate variable

changes, the integral solves to

dij =
2

3

(diji)
2 + d

ij
i d

ij
j + (dijj)

2

d
ij
i + d

ij
j

(5.6)

Assuming that particles i and j are close to each other, and that the metric is slowly
changing, cruder approximations of the distance are also possible, namely by simply avera-
ging the distances as \seen" from i and j

dij � d
ij
i + d

ij
j

2
(5.7)

or by averaging the metrics as

dij �
p
rijTM ijrij , with M ij =

M i +M j

2
(5.8)

From the three proposed approximations the last is the fastest to compute since it requires
only one square root operation. Also �nding the squared distance doesn't require any square
root operation at all.

5.1.2 Computing Areas

The area of a domain
 is de�ned as

A(
) =

ZZ

p
detM(x) dx1dx2 (5.9)

Again it would be possible to solve the integral for a triangle 4abc, knowing the metric
at each vertex, and linearly interpolating it in between.

We will not bother to do so, and simply give a cruder approximation:

A(4abc) =
1

2

s
det

�
Ma +M b +Mc

3

�
� (b� a)� (c� a) (5.10)

5.2 Anisotropic Triangulation

Although it is possible to compute the Delaunay triangulation of an anisotropically distri-
buted point set, it is reasonable to consider anisotropicity in the triangulation process. It
has been shown by D'Azevedo [5] that it is better to Delaunay triangulate in a transformed
space to minimize errors for function interpolation.

Only simple cases (for example when the metric tensor is constant) allow a global map
of the domain into a 2-dimensional Euclidean space by coordinate transformation. In the
general case, spaces of higher dimensions are needed. To solve this problem, a simple
approximation is used. It is considered that the metric is locally constant when performing
the circumcircle test. This local constant metric is computed by averaging the metric at the
four points considered for the test:

M =
1

4
�

4X
i=1

M i (5.11)

45

In Euclidean geometry the InCircle test is de�ned by equation 2.9. Its Riemannian
equivalent is: p

detM(a� b)(cTM d) + (aTM b)
p
detM(c� d) > 0 (5.12)

and since
p
detM is positive:

(a� b)(cTM d) + (aTM b)(c� d) > 0 (5.13)

5.3 Anisotropic Energy Potential

All the energy potential functions de�ned in Chapter 3 are in the form

Eij = �̂2 �� ��ij�
and the gradient of which is

rxiE
ij =

�0
�
�ij
�

�ij
� rij (5.14)

In an anisotropic context the normalized distance �ij is replaced by dij as de�ned in
Section 5.1.1. Finding an equivalent for �̂2 is more di�cult. In Eij it could be replaced by
1=
p
detM i, but that would break the symmetry between Eij and Eji. To solve this, we

can average 1=
p
detM i and 1=

p
detM j to get

p
detMi+

p
detMj

2
p
detMi�

p
detMj

. As this expression is rather

complex, in practice we will approximate it by � = 1=
p
detM ij , where M ij is the average

between M i and M j .
The potential energy function becomes

Eij = � ��(dij)

of which the gradient is

rxiE
ij = � � �0(dij) � rxid

ij +�(dij) � rxi�

where rxid
ij is quite a complex expression, which depends on the derivative of the position

of particle i, but also on the derivatives ofM . For the sake of simplicity, we will consider that
dij =

p
rijTM ijrij , as de�ned is equation 5.8, and that M ij is locally constant. Following

this simpli�cation we have

rxid
ij � M ijrij

dij

Furthermore rxi� is zero since M ij is considered locally constant. The gradient can
thus be rewritten as

rxiE
ij � � ��0(dij)

dij
�M ijrij (5.15)

It is also possible to simplify the expression of the gradient in a more radical way, by
substituting dij for �ij in the gradient expression 5.14:

rxiE
ij � �0(dij)

dij
rij (5.16)

46

Equations 5.15 and 5.16 are quite similar, but whereas in the latter the gradient of Eij

is aligned with rij , it is usually not the case in the former, where rij is multiplied by the
matrix �M ij . This multiplication has for consequence a precession movement that will
tend to align rij with one of the eigenvectors of M ij . When rij is parallel to one of the
eigenvectors of M ij then the gradient of Eij is aligned with rij .

In practice, the simpler scheme (Equation 5.16) is used.

5.4 Background Mesh

Although it is possible to explicitly de�ne the metric tensor as a set of functions, it is often
preferable to de�ne the metric at given points, and then interpolate in between. A backgro-
und mesh is used to do so. At each node of the background mesh a metric matrix is de�ned.
The metric at the other points of the domain can be computed by linear interpolation. If
Ma, M b, and Mc are the metric matrices at the vertices of a triangle 4abc in which a point
p lies, then the metric matrix at p is given by:

Mp =
wap �Ma + wbp �M b + wcp �Mc

wap + wbp + wcp
(5.17)

where

wap = (xp � xb)� (xc � xb)

wbp = (xp � xc)� (xa � xc)

wcp = (xp � xa)� (xb � xa)

The triangulation of the set of samples de�ning the metric can either be given by the
user or computed. In the latter case, Delaunay triangulation is used.

To compute the metric at a given point, the triangle it lies in �rst has to be determined.
To do so, it is possible to use data structures such as the history tree proposed in [14].
Although the cost of one location is onlyO(logm), wherem is the number of samples de�ning
the metric, this method is suboptimal. Since the metric is only evaluated at positions where
particles are located, and that particles rarely move across more than one triangle in the
background mesh during one time step, it is better to cache the triangle a particle lies
in. When a particle is moved, the eventually new triangle it moves into, can quickly be
determined by a simple walking method. The metric evaluation cost can thus be reduced
to O(1).

A potential drawback of only piecewise linearly de�ning the metric is that the feature
size function only has C0 continuity. In the present scheme, however, this is not a problem.

5.5 Method Summary

Section 3.1.3 introduced the main loop of the mesh generator. We will now extend it to the
general, anisotropic case:

build the constrained Delaunay triangulation of the domain
loop

randomly pick a particle i that is marked alive
compute rxiE and Ci

47

xi xi + � � (rxiE + Ci)
compute the areas of triangles incident to i
create/annihilate a particle if areas are too high/low
update the triangulation

where equations 5.15 and 3.20 are used to compute rxiE, and equation 5.10 to compute
triangle areas. For distances, either equation 5.8 or 5.6 can be used.

This algorithm has been implemented in C++ on Silicon Graphics workstations. The
source code spans over roughly 5000 lines. The OpenGL graphical library was used to
display the mesh evolution in real time. All the meshes inserted in this document have been
generated by the program, which can directly output encapsulated Postscript �les.

5.6 Function Interpolation

Given a function f , the metric that generates a mesh for piecewise linear interpolation such
that the RMS error is minimum, is given by the \curvature" of the function. This curvature
is equivalent to the Hessian matrix of the function de�ned as

Hf =

�
@2f=@x21 @2f=@x1@x2

@2f=@x2@x1 @2f=@x22

�
(5.18)

Since Hf is symmetric, it can be represented as

Hf = RT

�
�1 0
0 �2

�
R (5.19)

where R is a rotation matrix. Given this decomposition, it is trivial to de�ne a matrix Mf

such that both its eigenvalues are positive1:

Mf = RT

� j�1j 0
0 j�2j

�
R (5.20)

In practice it is necessary to limit the values of the eigenvalues to a given range. Other-
wise the mesh elements could get arbitrary small or large. It has also been proposed [3] to
align one of the eigenvectors of the metric matrix with the boundary, when close to one.

5.6.1 Example: a Gaussian function

The function we approximate is

f(x; y) = exp

�
�x

2 + y2

2

�

of which the Hessian is

Hf =

�
x2 � 1 xy

xy y2 � 1

�
� f

The eigenvalues of Hf are �1 = �f and �2 = (x2 + y2 � 1) � f . The corresponding

eigenvectors are e1 =
� �y=r x=r

�T
and e2 =

�
x=r y=r

�T
, where r =

p
x2 + y2.

1The eigenvalues need to be positive to ensure that the squared distance between any two points is always

positive.

48

Following the rules previously described, we obtain the metric tensor

Mf =

�
y2 + cx2 (c� 1)xy
(c� 1)xy x2 + cy2

�
� jf j
x2 + y2

where c = jx2 + y2 � 1j.
Figure 5.2 shows the mesh obtained with the Mf over the domain
 = [0; 3]� [0; 3].

Unadapted: 572 particles Adapted: 409 particles

Figure 5.2: Meshes for Gaussian function approximation

Experiments have shown that, for an identical number of particles, the RMS error of the
piece-wise linear approximated function is about 8 times smaller for adapted meshes than
for unadapted ones.

5.7 Incremental Mesh Adaptation

To generate a good mesh for �nite element analysis, one has to have a good knowledge
of what the solution is. But what if one doesn't? A solution is to generate a metric by
successive re�nements. The incremental adaptation loop is

1. start with a uniform feature size function

2. build/update the mesh

3. run the �nite element solver with the current mesh

4. estimate the error. If the error is smaller than some amount, then exit, else adapt the
metric according to the current solution, and go back to step 2

While the initial mesh is uniform as in Figure 5.3, after several iterations, the metric
becomes better adapted to the problem and the quality of the mesh is improved, similarly
to Figure 5.42.

2This �gure has been obtained with a hand-de�ned background mesh. No solver has been used.

49

Figure 5.3: Without background mesh: uniform mesh with 2865 particles

Figure 5.4: With background mesh: anisotropic mesh with 229 particles

5.8 Running Time

To empirically determine the asymptotic running time of the algorithm, we have generated
meshes for Gaussian function approximation with di�erent numbers of particles.

Figure 5.6a shows the CPU time3 required to generate a mesh containing n particles.
The running time increases slightly faster than linearly with the number of particles. To �nd
out why this is, we have looked at the growth of the number of steps versus the number of
particles. Figure 5.6b shows the number of steps grows less than linearly with the number of
particles. On the other hand, the number of steps executed within a second decreases as the
number of particles grows. This is in contradiction with the theory, which predicts that the
time complexity of one step is O(1). Our guess is that speed performance decreases because
the number of cache misses grows. Using pro�ling, we have found that the subroutine which
gets more and more time consuming proportionally to the number of steps, is a quite simple
subroutine which does actually only scan through all the edges adjacent to a newly picked

3On a 250Mhz Mips R4400 chip

50

Figure 5.5: Background mesh

a)
0

100

200

300

400

500

600

700

0 10000 20000 30000 40000 50000 60000 70000 80000

C
P

U
 ti

m
e

of particles b)
36

38

40

42

44

46

48

50

52

0 10000 20000 30000 40000 50000 60000 70000 80000

of

 s
te

ps
 /

of

 p
ar

tic
le

s

of particles

Figure 5.6: Running time results

particle i. The reason for apparent sup-linear time complexity is thus cache misses.
Our conclusion is that the asymptotic time complexity of the algorithm is O(n).

51

52

Chapter 6

Conclusion

We have presented a new method for generating triangular meshes in a 2-dimensional domain
bounded by straight lines. The following considerations have led to the formulation we have
given:

� the particle approach seemed promising because it allowed good node placement.

� whereas in previous methods the particle interaction neighborhood was de�ned by
geometrical distances, we have opted for topological distances. This allows for faster
neighborhood computation at zero data structure space cost.

� although it is possible to de�ne particle interaction as purely attractive or repulsive,
it turned out that mixed attractive/repulsive schemes work better.

� �nally anisotropy has been introduced because the previously de�ned scheme seemed
well suited, and the generalization straightforward.

A list of desirable features has been presented in the introduction. We now review it:

� functionality. The new approach works, as the meshes in this document testify.

� robustness. Unfortunately the scheme is not as robust as it could be. Problems can
arise when constraints and the feature size function are \incompatible", that is if
the distance between two constrained nodes is much shorter than the desired edge
length. The system oscillates as particles are continuously created and annihilated.
The system can su�er from the same pathology when changes in the metric tensor are
too abrupt.

� quality. The quality of the results is good, as the angle and edge length histograms
show. The presented approach can also be seen as a mesh postprocessing tool. In pra-
ctice it has proven superior to Laplacian smoothing. The reasons seem to be twofold:
Laplacian smoothing doesn't have any knowledge of what the inter-point distance
should be, and maintenance of the Delaunay characteristics after point displacement
improves the shape of the mesh elements.

� speed. It is probably not a strength of the presented approach, although the asym-
ptotic running time seems to be O(n), where n is the number of nodes in the mesh.

53

However, in applications where constant remeshing is required the new approach sho-
uld perform well.

� minimal user interaction. Several variables controlling the particle interaction model
need to be set. Although an experienced user could decide on what values to use, it
is possible to come up with a standard set of values, in which case no user input is
needed at this point.

� controllability. The introduction of a background mesh seems to give the user su�cient
control. If he miscalculates the e�ect of the linear interpolation, he can always add a
new sample to have the mesh better �t his desires.

Figure 6.1: A nice anisotropic mesh

6.1 Future work

Directions for future work are many:

� apply the method to solve real problems. The meshes that have been presented here
were all generated with hand-made domains and hand-made background meshes. The
addition of a �nite element solver would help to demonstrate the abilities of this new
meshing method to generate adapted meshes.

� generalize to non-polygonal domains. Most objects in the real world cannot be descri-
bed by a set of line segments. A more powerful scheme, which may include splines, is
thus needed.

� generalize to higher dimensions. 3-dimensional meshing is not as well understood as
2-dimensional meshing. Maybe a physically{based approach could solve the sliver
problem1.

� �nd even better particle interaction schemes. We believe that the proposed inte-
raction scheme is good, but could still be improved, especially on the particle cre-
ation/annihilation side. A scheme where particles are inserted at centers of circum-
circles could maybe generate better meshes that need less smoothing. On the annihi-
lation side, collapsing edges might be better than removing nodes.

1A sliver an ill-shaped tetrahedron of which the four vertices are almost co-planar

54

� introduce an a priori feature size function based on geometry when none is provi-
ded. This would probably make the scheme more robust (see previous remark on
robustness).

� �nd out how much remeshing from a previous solution is better (same mesh quality
at lower computational cost) than remeshing from scratch.

6.2 Acknowledgements

I would like to thank Paul Heckbert for inviting me to Carnegie Mellon, and for being a
wonderful advisor to work with; Marshall Bern, Michael Garland, Michael Erdmann, Andy
Witkin, Jim Winget, Scott Canann, and Paul Heckbert for their helpful comments and
suggestions; and my father who has been supporting me for more than 23 years now.

55

56

Bibliography

[1] Eric B. Becker, Graham F. Cary, and J. Tinsley Oden. Finite Elements: An Introdu-

ction, volume 1. Prentice-Hall, Englewood Cli�s, NJ, 1981.

[2] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. Techni-
cal Report P92-00047, Xerox PARC, 1992.

[3] M.J. Castro-Diaz, F. Hecht, and B. Mohammadi. New progress in anisotropic grid
adaptation for inviscid and viscous
ows simulations. In 4th Annual International

Meshing Roundtable, 1995.

[4] L. Paul Chew. Constrained Delaunay triangulations. Algorithmica, 4:97{108, 1989.

[5] E.F. D'Azevedo. Optimal triangular mesh generation by coordinate transformation. J.
Sci. Stat. Comput., 12(4):755{786, July 1991.

[6] L. Devroye, E.P. M�ucke, and B. Zhu. A note on point location in Delaunay triangula-
tions of random points. Submited for publication, 1995.

[7] H. Edelsbrunner and R. Seidel. Voronoi diagrams and arrangements. Disc. and Comp.

Geom., 8(1):25{44, 1986.

[8] D.A. Field. Laplacian smoothing and Delaunay triangulations. Comm. Appl. Num.

Methods, 4:709{712, 1988.

[9] S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153{174,
1987.

[10] William H. Frey and David A. Field. Mesh relaxation: A new technique for improving
triangulations. International Journal for Numerical Methods in Engineering, 31:1121{
1133, 1991.

[11] N.A. Golias and T.D. Tsiboukis. An approach to re�ning three-dimensional tetra-
hedral meshes based on delaunay transformations. International Journal for Numerical

Methods in Engineering, 37:793{812, 1994.

[12] James Gosling and Henry McGilton. The Java Language Environment: a white paper.
Sun Microsystems, October 1995.

[13] Leonidas Guibas and Jorge Stol�. Primitives for the manipulation of general subdi-
visions and the computation of Voronoi diagrams. ACM Transactions on Graphics,
4(2):74{123, April 1985.

57

[14] L.J. Guibas, D.E. Knuth, and M. Sharir. Randomized incremental construction of
Delaunay and Voronoi diagrams. Technical Report STAN-CS-90-1300, Stanford Uni-
versity, 1990.

[15] K. Ho-Le. Finite element mesh generation methods: a review and classi�cation.
Computer{Aided Design, 20(1):27{38, Jan/Feb 1988.

[16] Thomas Kao and David M. Mount. Dynamic maintenance of Delaunay triangulations.
Technical Report CS-TR-2585, University of Maryland, 1991.

[17] C. L. Lawson. Software for c1 surface interpolation. In John R. Rice, editor, Mathe-

matical Software III, pages 161{194. Academic Press, 1977.

[18] Geo� Leach. Improving worst-case optimal Delaunay triangulation algorithms. In 4th

Canadian Conference on Computational Geometry, 1992.

[19] D.A. Lindholm. Automatic triangular mesh generation on surfaces of polyhedra. IEEE
Trans. Magnetics, 19:2539{2542, 1983.

[20] Dani Lischinski. Incremental Delaunay triangulations. In Paul S. Heckbert, editor,
Graphics Gems IV, pages 47{59. Academic Press, 1994.

[21] S.H. Lo. A new mesh generation scheme for arbitrary planar domains. International

Jounral for Numerical Methods in Engineering, 21:1403{1426, 1985.

[22] Dimitri J. Mavriplis. Adaptive mesh generation for viscous
ows using Delaunay trian-
gulation. Journal of Computational Physics, 90(2):271{291, October 1990.

[23] J. Peraire, M. Vahdati, K. Morgan, and O.C. Zienkiewicz. Adaptive remeshing for
compressible
ow computations. Journal of Computational Physics, 72:449{466, 1987.

[24] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: an Introdu-

ction. Springer-Verlag, 1985.

[25] J. Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In
4th ACM-SIAM Symp. on Disc. Algorithms, pages 83{92, 1993.

[26] Kenji Shimada. Physically-Based Mesh Generation: Automated Triangulation of Sur-

faces and Volumes via Bubble Packing. PhD thesis, MIT, 1993.

[27] Kenji Shimada and David C. Gossard. Computational methods for physically-based fe
mesh generation. In PROLAMAT. IFIP TC5/WG5.3, 1992.

[28] I.S. Sokolniko�. Tensor Analysis, Theory and Applications to Geometry and Mechanics

of Continua. John Wiley, New York, 2nd edition, 1964.

[29] Richard Szeliski and David Tonnesen. Surface modeling with oriented particle systems.
In SIGGRAPH'92 Proceedings, pages 185{194, 1992.

[30] Greg Turk. Generating textures on arbitrary surfaces using reaction-di�usion. In
SIGGRAPH'91 Proceedings, pages 289{298, 1991.

[31] Marie-Gabrielle Vallet. Generation de maillages anisotropes adaptes - application a la
capture de couches limites. Technical Report 1360, INRIA, 1990.

58

[32] N.P. Weatherill and O. Hassan. E�cient three-dimensional Delaunay triangulation with
automatic point creation and imposed boundary constraints. International Journal for
Numerical Methods in Engineering, 37:2005{2039, 1994.

[33] William Welch. Serious Putty: Topological Design for Variational Curves and Surfaces.
PhD thesis, Carnegie Mellon University, 1995.

[34] Andrew P. Witkin and Paul S. Heckbert. Using particles to sample and control implicit
surfaces. In SIGGRAPH'94 Proceedings, 1994.

[35] M.A. Yerry and M.S. Shepard. A modi�ed quadtree approach to �nite element mesh
generation. IEEE Computer Graphics and Applications, 3:39{46, January/February
1983.

59

